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Abstract. Rainfall-induced landslides are a common and significant source of damage and fatality worldwide. Still, we have

very little understanding of the quantity and properties of landsliding that can be expected for a given storm and a given

landscape, mostly because we have very few datasets of rainfall-induced landslides. Here we present six new comprehensive

landslide inventories associated to well identified rainfall events. Combining these datasets, with two previously published

datasets, we study their statistical properties and their relations to topographic slope distribution and storm properties. Landslide5

metrics (such as total landsliding, peak landslide density or landslide distribution area) vary across 2 to 3 order of magnitudes

but strongly correlate with the storm total rainfall, varying over almost 2 orders of magnitude for these events. Correlation

increases when we apply a normalization on the landslide runout distances. The non-linear scaling with total rainfall should

be further constrained with additional cases and incorporation of landscape properties such as regolith depth, typical strength

or permeability estimates. We also observe that, for storm with longer duration, landslides do not occur preferentially on10

the steepest slopes of the landscape, contrarily to observations from earthquake-induced landslides, suggesting preferential

failures of larger drainage area patches with intermediate slopes. The database could be used for further comparison with

spatially resolved rainfall estimates and with empirical or mechanistic landslide event modeling.

Copyright statement. TEXT

1 Introduction15

Landslides associated with heavy rainfalls cause significant economic losses and may injure several thousand people a year

worldwide (Petley, 2012). In addition, the frequency of landsliding increases with that of extreme rainfall events (Kirschbaum

et al., 2012), itself expected to increase with global change (Gariano and Guzzetti, 2016). Landslides are also recognized as a

major geomorphic agent contributing to erosion and sediment yield in mountainous terrain (Hovius et al., 1997; Blodgett and
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Isacks, 2007). Yet, constraining quantitatively relationships between landslides and rainfall metrics remains out of reach.

We have some theoretical understanding of how rainfall, through water infiltration in the ground, can increase pore water

pressures and trigger failures (Van Asch et al., 1999; Iverson, 2000). Therefore a variety of mechanistic models have been de-

veloped, usually by coupling a shallow hydrological model to a slope failure criterium (e.g., Montgomery and Dietrich, 1994;

Baum et al., 2010; Arnone et al., 2011; Lehmann and Or, 2012). However, such deterministic approaches require not only5

appropriate physical laws, but also an accurate and fine-scale quantification of many input parameters (topography, cohesion,

permeability, rainfall pattern)(Uchida et al., 2011). At this day, such level of detailed information is unavailable in most places

and render deterministic approaches inapplicable.

Data-driven studies have mostly focused on using precise information on individual landslide location and timing to decipher

thresholds, typically based on preceding rainfall intensity and duration, at which landslide would initiate (Caine, 1980; Guzzetti10

et al., 2008, and references therein). Although useful for hazard and early-warning purposes (e.g., Keefer et al., 1987), such

approaches completely ignore the number, size and other properties of landslides that can be triggered by a rainfall event, while

these properties are useful, if not required for most natural hazard or geophysical applications. In order to understand the im-

portance of rainfall on erosion rates or to anticipate landslide hazard associated with emerging cyclones and heavy rainstorms,

it is highly desirable to quantitatively relate the properties of a landslide event L (total area, volume, size distribution) to the15

combination of site susceptibility, s, and rainfall forcing, f , properties, or equivalently to develop scaling relations of the form

of:

L = g(s(slope, soil thickness, strength, permeability, ...), f(total rainfall, intensity, antecedent rainfall, ...)) (1)

Although being simplified versions of mechanistic models, such scaling laws can be useful to describe average properties

of the phenomena, here a population of landslides associated with a constrained trigger. The value of statistical or semi-20

deterministic approaches is that they are able to predict accurately global properties, while circumventing the difficulties of

predicting specific local properties of individual landslides. Indeed, such scaling laws would allow to make prediction in data

scarce region and possibly at various scales (large slope scale, catchment scale, region scale, etc). This approach has driven

important progress for both the understanding and hazard management of earthquake-induced landslides, thanks to the intro-

duction of purely empirical, physically inspired or mixed functional relations in the form of Eq. 1 (e.g., Jibson et al., 2000;25

Meunier et al., 2007, 2013; Nowicki et al., 2014; Marc et al., 2016, 2017). These progresses have been possible thanks to,

first detailed investigation of individual case studies with comprehensive landslide inventories (e.g., Jibson et al., 1994; Liao

and Lee, 2000; Yagi et al., 2009) and next through their combined analysis as aggregated databases (Marc et al., 2016, 2017;

Tanyaş et al., 2017).

In contrast, very few studies on rainfall induced landslides are based on comprehensive inventories. Some studies are based30

on individual landslide information. For example, Saito et al. (2014) studied 4744 landslides in Japan, that occurred between

2001 and 2011, to better understand which rainfall property controls landslide size. This dataset, aggregating small subset of

the landslides triggered by rainfall events, misses the vast majority of landslides (for example, in Japan, Typhoon Talas alone

caused a similar amount of landslides in a few days). It is therefore insufficient for more advanced statistical analyses. At global
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scale, Kirschbaum et al. (2009), presented a catalog containing information on 1130 landslide events worldwide, occurring in

2003, 2007 and 2008. With this catalog they underlined the correlation between extreme rainfall and landsliding (Kirschbaum

et al., 2012). However, such catalogs, mainly based on reports from various kinds, gather very fragmentary knowledge, and

contain little quantitative information on landsliding. Thus, we consider that neither landslide scale or global scale studies are

sufficient to constrain effectively Eq 1, and that storm scale detailed information are needed.5

Although relatively rare, some case studies at the catchment scale exist (and are briefly reviewed in the next section) but they

rarely constrain the whole region affected by the storm, and thus . However, in theory, satellite imagery allows comprehensive

mapping of landslides larger than the resolution limit, across all catchments affected by a large storm. In practice, obtaining

useful images strictly constraining the landsliding caused by a single storm is not always possible, mainly because of cloud

coverage, and detailed mapping across vast areas represent a significant work effort. As a result, landslide inventories triggered10

by rainfall during a whole season or a few years are used for testing mechanistic models (e.g., Baum et al., 2010; Arnone et al.,

2011).

The purpose for this paper is to present a compilation of new and past comprehensive rainfall-induced landslide (RIL) invento-

ries, each representing adequately the landslide population associated with an identified storm. They constitute the core of an

expandable database, essential for further research. We first briefly review existing comprehensive and partially complete in-15

ventory associated with specific storms. Then we present six new inventories and analyze their statistical properties in terms of

size, geometry and relation to topographic slopes. We further analyze and discuss the properties relative to rainfall observations

in those cases and conclude on the various insights that can be derived from such inventory compilation.

2 Data and methods

2.1 Review of pre-existing dataset20

An in-depth literature review revealed that very few comprehensive, digital, RIL inventories have been published, such as the

Colorado 1999 and Micronesia 2002 events detailed below. If we look for partial inventories, in which landslides have been

mapped comprehensively in limited zones affected by a storm, a few more datasets exists.

For example, hurricane Mitch hit central America at the end of 1998 and triggered thousands of landslides across several coun-

tries. The rainfall were record breaking in many places, with rain gauges recording up to 900, 1100 and 1500 mm in Honduras,25

Guatemala and Nicaragua (Bucknam et al., 2001; Cannon et al., 2001; Crone et al., 2001; Harp et al., 2002). In the following

weeks, the USGS performed an number of air-surveys, identified the most affected areas in these three countries as well as in

El Salvador (where the rainfall amount was less), and mapped a large number of the failures based on aerial photographs. The

resolution of the optical imagery allowed to distinguish failures down to a relatively small size (< 100m2), but the mapping

amalgamated multiple failures into single polygons, and combined very long debris flow paths and/or channel deposits to the30

source areas. Last, the mapping was only performed in a number of isolated areas, that were "the most affected", and it is

unclear how much landsliding was present in the unmapped zones. Because of these limitations, we did not investigate this

case in details here but note that these inventories may be corrected and used by later studies. Similarly in a number of studies,
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inventory of all the landslides caused by a given storm in a specific catchment or geographic zone can be found, in Liguria

2000 (Guzzetti et al., 2004), Umbria 2004 (Cardinali et al., 2006), Sicily 2009 (Ardizzone et al., 2012), Peru 2010 (Clark et al.,

2016), Thailand 2011 (Ono et al., 2014) and Myanmar 2015 (Mondini, 2017) and in Taiwan for ten typhoons between 2001

and 2009 (Chen et al., 2013). The issues for these partially complete datasets is whether or not the statistical properties of the

subset are representative of the entire dataset associated with the storm and its specific properties. There is no doubt that a num-5

ber of these datasets could be completed based on available satellite imagery and later complement the database presented here.

In this study we analyzed two datasets published previously by the USGS. First, an afternoon rain on the 28th of July

1999 that triggered numerous landslides and debris flows in the Colorado front range (Godt and Coe, 2007). Based on aerial

photographs interpretation and field inspection, landslides were mapped as polygons containing source areas, debris flow10

travel and deposition zones. 57 out of 328 polygons were associated to multiple sources (2 to > 15). Often the largest of these

polygons represent 61% of the total landslide area. As the surface of the source areas were often of similar width, we decided to

conserve multi-headed polygons and to consider each sources contributed equally. Thus, we use the whole landslide area, Al,

perimeter, Pl, and number of source, Ns, for each multi-headed polygon to derive an equivalent area and perimeter associated

with each source:As =Al/N−s and Ps = Pl/Ns. This first order approach underestimates the perimeter of each components15

by one width (the segment that would be added for each necessary split), however this underestimation decreases with the

length/width ratio of the polygons, and is already below 10% for L/W > 4. In any case, this assumption does not affect the

total area affected, but it changes the landslide frequency-area and frequency-width distributions, and all terms derived from

them.

The second dataset contains landslides caused by a summer typhoon in July 2002, mapped exhaustively with aerial photos on20

the islands of Micronesia (Harp et al., 2004). We digitized the original maps based on strong contrast between red polygons

and the rest of the maps. A few artifacts due to this image processing were removed and a few amalgams were split. Again,

scarps and deposits are not differentiated.

2.2 New comprehensive inventories of rainfall-induced landslides

We present the mapping methodology and imagery (Table Suppl. 1) used to produce six additional inventories. In 2008 around25

the Brazilian town of Blumenau, several days of intense rainfall at the end of a very wet fall triggered widespread landsliding

and flooding, with some partial inventories published in the Brazilian literature (e.g., Pozzobon, 2013; Camargo, 2015) but

no analyses in the international literature. The detection and manual mapping of landslides as georeferenced polygons was

primarily done with a pair of Landsat 5 cloud free images (02/01/2009 and 03/02/2008). The coarse resolution (30m) of

the images allowed only to locate vegetation disturbances and accurate landslide delineation was only possible for the largest30

events. Therefore we used extensively high-resolution imagery available in Google Earth acquired in May-June 2009, and when

not available in 2010-2012, where scars were still visible. We mapped only the ones corresponding to vegetation radiometric

index (e.g. NDVI) reduction for the pair of Landsat 5 images. Thus the landslide mapping could be confirmed for ∼90% of the

mapped polygons, and man-made digging or deforestation occurring on steep slopes could be avoided. This approach avoid
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amalgamating groups of neighboring landslides and to map very small landslides (∼1 pixel in Landsat 5 images). However,

some detailed field mapping in the surrounding of Blumenau reports up to twice more landslides than we observed (Pozzobon,

2013) indicating that we still miss a number of small events. Nevertheless, these landslides must be quite small (not visible

in ∼ 1m resolution imagery) and likely do not affect any of our statistics (area, volume, slope) apart the total number of

landslides.5

The same approach was used to map the intense landsliding caused by a few days of intense rainfall between the 10th and

the 12th of January 2011 (Netto et al., 2013), in the mountains northeast of Rio de Janeiro. Near Teresopolis, we used first a

pan-sharpened (10m) EO-ALI and a Landsat 7 images from February 2011 for co-registration and ortho-rectification. > 95%

of the slides were cross-checked in Google Earth (Fig 1) and where clouds or no images where available we mapped landslides

directly from Google Earth, even if poor ortho-rectification may create geometric distortions. Closer to Nova Friburgo, we used10

a pair of very high resolution Geoeye-1 image presented in Stumpf et al. (2014), and extended the methods presented in their

study to classify the whole image. Then, we screened manually the image to remove false positive (agricultural field, inundated

areas, channel deposits) and split the amalgamated landslides, very frequent given the important clusters of landslides in many

part of the image. This correction seems sufficient given that landslide size distribution for the three subparts of the inventory

are consistent (Fig. Suppl. 1). Polygons from the automatic classification display a slightly larger equivalent length/width ratio,15

maybe because some amalgamated polygons have been missed or simply because the classification allows hollow polygons,

biasing upward the length/width estimate based on a perimeter/area ratio (see below).

In the first days of September 2011 (1st-4th), typhoon Talas triggered very heavy rainfall on the Kii Peninsula, in Japan,

resulting in several thousands of landslides. For disaster emergency response, the National Institute for Land and Infrastructure

Management of Japan mapped landslides across most of the affected areas based mainly on post-typhoon aerial photographs20

and occasionally on Google Earth imagery (Uchida et al., 2012). Screening antecedent imagery (2010-2011) from Google

Earth and Landsat 5 we identified and removed a few hundreds pre-Talas polygons, mostly within 5km of 136,25°E/34,29°N

and 135,9°E/34,20°. With Google Earth we added almost 200 polygons in areas were aerial photographs were not taken, and

split many large or multi-headed polygons that were amalgamated. Some polygons had distorted geometry or exaggerated

width, most likely due to poor ortho-rectification of the aerial imagery and/or time-constrains for the mapping. We could not25

systematically check all polygons, but we checked and corrected all polygons larger than 30,000m2 (3% of the catalog but

representing 45% of the total area). We consider that the remaining distortions for some of the smaller polygons have minor

impacts on the statistics discussed in the next sections.

In Taiwan, we collected landslide datasets associated with the 2008 Kalmaegi (16-18th Jul.) and 2009 Morakot (6-10th Aug.)

typhoons, partially described by Chen et al. (2013). For 2008, we compared multispectral composite images and NDVI changes30

between Landsat 5 images taken on the 06/21, 07/07 and 07/23. The image from 07/07 is covered by clouds and light fog in

many parts but allows identifying that most places affected by landslides in the last images were still vegetated at this time.

Thus all new landslides, delineated manually, are attributed to the rainfall from typhoon Kalmeagi. For 2009, landslides were

delineated manually by comparing surface reflectivity and morphology on pre- and post-event FORMOSAT-2 satellite images

(2 m panchromatic and 8 m multi-spectral) (Chang et al., 2014). To cover most of the island, we mosaicked multiple mostly35

5

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2018-20
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 27 March 2018
c© Author(s) 2018. CC BY 4.0 License.



Figure 1. Landslides inventory superimposed on digital surface model for the events in Japan 2011 (A), Brazil 2008 (B), Micronesia 2002

(C), Colombia 2015 (D), Colorado 2002 (E), Brazil 2011 (F) and Taiwan 2008 and 2009 (G). Landslides are in purple, rain gauges used in

this study are in red dots (and red crosses for Taiwan 2009), and the yellow frames show the availability of high resolution imagery (Google

Earth) used to check or perform the mapping. In G, the pink dots are landslides from 2008, while purple dots are from 2009. In F, purple,

pink and cyan are landslides mapped from EO-ALI, Google Earth and automatic classification of Geoeye image, respectively.
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cloud-free pre-event (01/14, 05/08, 05/09, 05/10, 06/06) and post-event (08/17, 08/19, 08/21, 08/28, 08/30, 09/06) images.

For sub-parts of the inventory, especially to the East of the main divide, landslides were first mapped automatically and then

edited manually. For both approaches, the scar, runout and deposit areas are not differentiated. We did not consider debris flow

transport within the fluvial system and ignored gentle slopes (< 10◦) from mapping to avoid confusion with human activity.

In a few areas with clouds in the post-event mosaic, we used Landsat imagery to be sure to map at least the largest landslides.5

Special attention was given to the separation of individual landslides by systematically checking and splitting polygons above

0.1km2 (2% of the catalog but representing 30% and 60% of the total area and volume). However, it is clear that a number of

smaller slides are missed or merged with large ones, and therefore although total landsliding and landslide locations on slope

may be well represented, the size distribution of this catalog must be biased to some extent.

Between 15 and 17th of May 2015, heavy rainfall in the mountains above the village of Salgar, Colombia, triggered catastrophic10

landslides and debris flow (>80 deaths). Landslide mapping was carried out by comparing a Sentinel 2 image from 2016 to

a 2014 Landsat 8 image. These images were selected for their absence of clouds, good conditions of light and similarity.

Other intermediate images in between those show very little activity before or after May, supporting the idea that all mapped

landslides can be attributed to this single rainfall event.

2.3 Rainfall data15

Rainfall data quality and amount are very variable for the different events, from 0 or 1 single gauge (For Micronesia or Colom-

bia), to dense gauge network and potentially weather radar coverage in Japan, Taiwan and Brazil. Therefore we selected a

simple index that could be obtained for each case in order to discuss potential rainfall controls on the landslide properties. For

each case we calculated an estimate of total rainfall, Rt, duration, D, and a peak rainfall intensity over 3 hours, I3 (Table 1).

Note that these variables do not represent an average value within the whole footprint of the storm but rather maximal forcing,20

usually where landsliding was the most intense (Fig 1), derived mostly from one or a few rain-gauges. A more detailed analysis

of the spatio-temporal pattern of the rainfall and of its relations to the spatial pattern of landsliding is highly desirable, but chal-

lenging with the available dataset. Indeed, some cases with little in-situ information may be best studied by a combination of

meso-scale rainfall modeling possibly assisted by satellite information, while other would require integration and processing of

extensive rain-gauges and radar measurements. For this study, we limit our scope to the analysis of specific landslide behavior25

and to the proposition of a series of research hypotheses that could be later investigated with very detailed inventories and

adequate rainfall analyses.

The estimates from Taiwan and Japan are based on hourly gauge measurements from the Japan Meteorological Agency and

Taiwan Institute for Flood and Typhoon research. In each case we took the three closest gauges within 5 to 15km from the

areas with the highest landslide densities (Fig Suppl. 2) and computed their average record properties (Fig 2). Minimum and30

maximum single gage measurements give a coarse measure of the uncertainty. A single gauge is available in Micronesia and

we used the hourly rainfall from 1st to 3rd of July 2002 reported in Harp et al. (2004). For Colorado, we used the hourly rainfall

from the rain gauge at Grizzly peak, closest of intense landsliding and reported by Godt and Coe (2007). For the event in Brazil

2008 we considered the total daily rainfall from Luis Alves station (Fig 1), where more than 130mm per day were accumulated
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Table 1. Rainfall data summary, containing the total rainfall, duration and maximum 3-hours intensity for each storms. For TW8, TW9 and

J11, we indicate the range for the three indexes that could be estimated from three gauges near the zone of maximal landsliding. We cannot

perform this analysis for MI2 and C99, and can only assess a range of Rt for B08 and B11. For C15, we indicate by a star that we could only

access satellite based rainfall estimates (GSMaP version 7 ungauged products, see Fig Suppl. 3). Reference are as follow, 1: (Godt and Coe,

2007), 2: (Harp et al., 2004), 3:(Camargo, 2015) , 4:(Netto et al., 2013) .

Event C99 MI2 B08 TW8 TW9 B11 J11 C15

Rt, mm 45 500 695[680-800?] 670[600-740] 2500[2100-2800] 280[200-320] 1300[1000-1500] 65[10-75]*

D, hours 4 20 100 24 100 36 65 10*

I3, mm.hr−1 13 65 30 92[78-116] 85[83-87] 55 58[38-88] 8*

Ref. 1 2 3 Us Us 4 Us GSMaP

on the 21st, 22nd and 23rd of November and 250mm on the 25th, and intensity going up to 50mm/hr (Camargo, 2015). These

days were also preceded by abnormally wet period, with November 2008 accumulating ∼ 1000mm, 7 times the long term

average for this month. In 2011 in Brazil, hourly rain data at Sitio Sao Paulista reports 200 mm in 8 hours before gauge failure,

while there and at nearby sites, the cumulative rainfall was ∼ 280mm from the 10th to the morning of the 12th January (Netto

et al., 2013). For these cases, raingages give a trustworthy estimate of the local rainfall, but are not constraining the large scale5

rainfall pattern. Last, in Colombia, we could not find data from any nearby rain-gauge and we thus use rainfall estimates from

the GSMaP global satellite products (Kubota et al., 2006; Ushio et al., 2009) (Fig Suppl. 3). Here, the minimum, mean and

maximum rainfall are obtained by considering the triggering storm as the raining period at the time of debris flow occurrence,

or the one from the previous day or merging both events, respectively (Fig Suppl. 3).

Defining storm duration accurately requires defining thresholds on rainfall intensity other given periods, to delimit the storm10

start and end. Given the variable quality of our data we limit ourself to a first order estimate of the continuous period when

rainfall was sustained. We consider these durations accurate within 10-20% for the events with overall hourly data. For the less

constrained cases B08, B11 and C15 duration is more uncertain. In any case, for these 8 storms, we note a strong correlation

between D and Rt and I3 and Rt (for power-law scalings, R2 = 0.8 and R2 = 0.7, respectively). Thus, given that spatial and

temporal length scales are often linked in meteorology, the long events causing larger rainfall may also have larger footprints.15

2.4 Landslide area, width and volume

Landslide planview area and perimeter are directly obtained from each polygon. However, these values represent the total area

disturbed, that is the scar, deposit and runout areas, because a systematic delineation of the scar was not possible from most of

the imagery. This means that landslide size statistics is resulting from processes affecting both landslide triggering and runout.20

Landslide volume, estimated based on area, may also be overestimated for long runout slides. Therefore we propose here a

simple way to normalize for landslide runout and obtain an estimate of the scar area.

Following Marc and Hovius (2015), we computed an equivalent ellipse aspect ratio, K, using the area and perimeter of each

8
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Figure 2. Rainfall history for typhoons Kalmaegi (TW8), Morakot (TW9), Talas (J11). For each event, hourly intensity is shown with solid

curves for three gauges nearby the area with most intense landsliding (see Fig 1 for locations). Dashed lines represent the mean cumulative

rainfall from the three gauges.

polygons. For polygons with simple geometries, K is close to the actual length/width ratio, but this is a measure that also

increases with polygon roughness or branching, and therefore with amalgamation (Marc and Hovius, 2015). An ellipse area

can be approximated by πLW/4 with L and W being the polygons full length and width, respectively. This allows to estimate

W '
√

4A/πK. Again, this value is close to the actual mean width of polygons that do not have artifacts. Thus for correctly

mapped polygons we can use width to derive a proxy of landslide scar area, As ∼W 2. Although this equivalent scar area may5

not exactly correspond to the real landslide scar, it effectively removes the contribution of the landslide runout to the landslide

size and allows to compare different size distributions while reducing the impact of variable runout distances.

We also assessed how using As affects estimates of landslide volumes and erosion, by computing landslide volume with the

total landslide area and with As only. In both cases, we used V = αAγ , with α and γ and their 1σ globally derived by Larsen

et al. (2010). Given that soil and bedrock slides have different shape and that soil slides are rarely larger than 105m2 (104m2 for10

soil scars) (Larsen et al., 2010), we used the “all landslide” parameters (γ = 1.332±0.005; log10(α) =−0.836±0.015) when

A< 105, and the “bedrock” parameters (γ = 1.35± 0.01;log10(α) =−0.73± 0.06) for larger landslides. Similarly we used

the soil scars (γ = 1.262±0.009; log10(α) =−0.649±0.021) and bedrock scars (γ = 1.41±0.02; log10(α) =−0.63±0.06)

for As < 104 m2 and As >= 104 m2, respectively (Larsen et al., 2010). Marc et al. (2016) proposed a rudimentary version of

9

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2018-20
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 27 March 2018
c© Author(s) 2018. CC BY 4.0 License.



such a runout correction, where they effectively reduced landslide area by a factor 2 for mixed landslides and 3 for bedrock

landslides, noting that volumes derived in this way were closer to field estimates for large landslides than without correction.

Uncertainties in this approach include the 1σ variability of the coefficient and exponent of the landslide area-volume relations

given above, and an assumed standard deviation of 20% of the mapped area. These uncertainties were propagated into the

volume estimates using a Gaussian distribution. The standard deviation on the total landslide volumes for the whole catalogs5

or for local subsets, were calculated assuming that the volume of each individual landslide was unrelated to that of any other,

thus, ignoring possible co-variance. Although estimated 2σ for single landslides is typically from 60 to 100% of the individual

volume, the 2σ for the total volume of the whole catalog is below 10% for the eight datasets. However, for subset with less

landslides and with volume dominated by large ones, typical when we compute the total landslide volume density in small area

(e.g., 0.05°),2σ uncertainties reaches 40-60%. We note however, that these uncertainties estimates do not consider potential10

errors in the identification of landslides, either missed because of occasional shadows or clouds or erroneously attributed to

the storm. Such uncertainty is hard to quantify but must scale with the area obscured in pre- and post-imagery. In most cases

multiple pre- and post-event images mean that obscured areas represent typically less than 10% of the affected area, and such

errors may be between few to ∼ 20% of the total area or volume, depending on whether obscured areas contain landslide

density higher or lower than the average observed throughout the affected area. Last, resolution may not allow to detect the15

small landslides and in some cases the landslide number may be significantly underestimates, but not the total area and volume

dominated by the larger landslides.

Last, for each inventory, we estimated the landslide distribution area, that is the size of the region within which landslide are

distributed. Based on the landslide inventories we could delineate an envelope containing the overall landsliding. As discussed

by Marc et al. (2017), such delineation is prone to high uncertainties as it is very dependent on individual isolated landslides.20

Thus for all cases, we give a range of distribution area, where the upper bound is a convex hull encompassing all the mapped

landslides, while the lower bound is an envelope ignoring isolated and remote landslides, if any. Although the spread can be

large in absolute value, both approaches yield the same order of magnitude.

3 Results

The built inventories contain from ∼ 100 to > 15,000 landslide polygons, representing total areas and volumes from 0.2 to25

200km2 and 0.2 and 700Mm3, respectively. The triggering rainfalls are characterized by a total precipitation of ∼ 50 to 2500

mm in period ranging from 4h to 4 days, and caused landslides within areas ranging from ∼ 50 to 10,000km2. Although the

dominant landslide types are soil and regolith slumps, a number of large deep-seated bedrock landslides are also present in the

inventories associated to the Talas and Morakot typhoons (Saito and Matsuyama, 2012; Chen et al., 2013). A more detailed

description of the landslide types and materials involved was not possible with the available imagery; thus our analysis does30

not consider landslide types. In the next sections, we present results obtained from these inventories in terms of landslide size

statistics, landslide spatial patterns and relation to slope, before correlating these landslide properties to rainfall parameters.
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3.1 Landslide properties

3.1.1 Landslide size statistics

Frequency size distribution of landslide inventories typically have power law, heavy-tail, above a certain modal size (Hovius

et al., 1997; Malamud et al., 2004). The modes and the decay exponents of these distributions are mainly related to the

lithology (mechanical strength) or topographic landscape properties (i.e., susceptibility related) (Stark and Guzzetti, 2009;5

Frattini and Crosta, 2013; Katz et al., 2014; Milledge et al., 2014). Some authors suggested that this behavior could also

be affected by the forcing processes. For example analyzing earthquake induced landslide catalogs, it was found that deeper

earthquakes, thus with weaker strong-motions, have a smaller proportion of large landslides (Marc et al., 2016). Based on

theoretical arguments, it has been proposed that short high intensity rainfall could cause pulses of high pore water pressures

at the soil-bedrock transition, initiating mainly small shallow landslides, while, long duration rainfall with important total10

precipitation could provoke significant elevation of the water table and trigger large, deep-seated landslides (Van Asch et al.,

1999). To our knowledge, only few empirical evidences have supported these assumptions, and we discuss next how our data

compare to these ideas.

All landslide size distributions present a roll-over and then a decay that may be fitted by a negative power-law function (Fig

3). The modal landslide area varies between ∼ 3000 m2 for TW8 and ∼ 300 m2 for B11, while the largest landslides are15

∼ 0.1 km2 for most events and reach ∼ 0.4 and 2.8 km2 for J11 and TW9, respectively. The roll-over position certainly

relates partly to the spatial resolution and acquisition parameters of the images (Stark and Hovius, 2001)(e.g., for TW8 and

B08 where landslides where mostly mapped on coarse spatial resolution image compared to aerial photographs for C99, J11).

However, physical parameters must also control the roll-over position given that, for example, MI2 mapped with 1m resolution

aerial imagery has larger modal area than C15 mapped with 10 m Sentinel-2 satellite imagery. The fit of the power-law decay20

beyond the mode or of the whole distributions with an Inverse-Gamma distribution (IGD) (cf, Malamud et al., 2004) gives

decay exponents ρ between 2 and 3, consistent with the typical range found in the literature (Hovius et al., 1997; Malamud

et al., 2004; Stark and Guzzetti, 2009; Frattini and Crosta, 2013). However, we note that at least three cases, B11, TW9 and

C99, have peculiar distributions, with a break in the distribution occurring at large areas, and followed by a very steep decay.

For these cases, the IGD gives a rather poor fit for the largest areas, and the normalized difference in decay exponent between25

a least-square fit of the tail and the IGD maximum likelihood is larger than the typical ∼ 10% uncertainties on the exponent

determination (21, 25 and 66% respectively, against 6± 5% for the five other cases).

When considering landslide estimated scar sizes, that is essentially a correction to reduce landslide polygon aspect ratio below

2, we observe a reduction of the largest landslide size by 2 to 10 fold, but a moderate reduction of the mode size. This

is consistent with the fact that landslides with long runout distances are often over represented within the medium to large30

landslides (Fig Suppl 4). We also note that after the runout distances variability is normalized, the peculiar size distribution of

C99 disappears and least-squares fits and IGD give decay exponents identical within a few percent. This is not the case however

for B11 and TW9 that still feature a steepening of their distribution decay (and a divergence from IGD fit) beyond ∼ 103 and

∼ 104 m2, respectively. Runout being normalized, this could be an artifact relating to residual amalgamation for TW9, but not
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Figure 3. Probability density functions of landslide whole area (A, B) and estimated scar area (C, D). A least square power-law fit of the tail

and an IGD maximum-likelihood estimation for the whole distribution are shown by solid and dashed lines respectively.

for B11 where most landslides were mapped manually and amalgamation was avoided. Thus, this peculiar distribution may be

the fingerprint of some physical phenomena but no reasonable hypotheses may be assumed so far.

3.1.2 Landslide and slope distribution

For all cases, we computed the frequency of slope angles above 5° based on the global 1 arc-second (∼ 30m) SRTM digital

surface model. In most cases, hillslopes have a distribution clearly independent from valley floors. However, for B08 and MI25

for example, the amount of plains in the study area do not allow to resolve the hillslope distribution. Therefore, for Micronesia

we removed all slopes which are less than 10 m above sea-level, and for Brazil, we extracted the slope cells in the landslide

distribution area but with a mask excluding the wide valley bottoms. The slope distributions of landslide affected areas gener-

ally lead to a sparsely populated histogram, and therefore, to compare it with the topographic distribution, all histograms were

smoothed with a moving average in a window of 3° width.10

We obtain topographic modal slopes, SM , at 15.5° and 18.5° for the gentle landscape of Micronesia and Brazil, while in Japan

and Taiwan we reach almost 30° (Fig 4). The slope distributions of landslide affected areas are systematically shifted towards
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steeper slopes. In most cases the landslide distribution has a very small shift, but for the C99, B11 and C15 rainstorms the

shift is more pronounced with a landslide modal slope ∼5° larger than SM . We note that, for the landslide distribution, the

proportion of slopes gentler than the topographic mode may be exaggerated due to the inclusion of deposition areas. This is

most significant for the C99 case, but also possibly affecting MI2 or B11. For C99 we have also extracted the slope at the

initiation point and found this distribution to have a similar mode and decay beyond it than the whole landslide distribution5

(Fig 4).

To further quantify the differences in slope sampling between these events, we computed the ratio of probability between the

slope distribution of the whole topography and of the landslide affected area only, PL/PT . This ratio represents the tendency

of landslide occurrence to be more or less frequent than the expected occurrence of a slope gradient units in the landscape. We

refer to this as and over or undersampling of the topographic slope distribution. To focus on landslide triggering and on the10

scar areas, we plot this ratio only for S > SM and against S−SM to compare the events in different landscape (Fig 5A).

Most events (in Taiwan, Japan, Micronesia) actually maintain an almost equal sampling across all steep slopes. We neglect the

important variations present for some cases at slopes 30 to 40° steeper than SM , as they may be artifact due to the small abso-

lute number of cells in this value range. However, B08, B11, C99 and C15, diverge strongly from equal sampling. The latter

three have a remarkably similar pattern, with undersampling at the mode and a rapid increase with steeper slopes until a 3 to15

10-fold oversampling between ∼ 15 and 30° beyond SM . This shows that additionally to a steeper landslide mode, landslides

are increasingly more frequent on very steep slopes, typically reaching a maximum of oversampling between 40° and 60°. In

contrast, in B08 we observe undersampling starting at 10° beyond the mode and reaching a 5-10-fold undersampling beyond

20°.

20

3.2 Correlation between rainfall metrics and landslide properties

3.2.1 Total landsliding

For the eight inventories, we observe a non linear increase of all metrics of total landsliding with the storm total rainfall (Fig 6).

The increase is fairly similar for the total area and volume, and best fit by exponential functions. We observe higher correlations

with rainfall, when using the total scar area (R2 = 0.78), estimated as W 2, instead of the total area (R2 = 0.72). This is mainly25

due the very large reductions of area for C99 and B11 where long runout landslides were dominant (Fig 6). Correlation are gen-

erally higher with volume and also increase when we derive total volume from scar estimates (from R2 = 0.81 to R2 = 0.87).

Note also that with these scar metrics, the relation to rainfall becomes equally or better fit by power-law function rather than

an exponential function (Fig 6). This is because when including landslide runout the total landsliding of C99 and C15 is larger

and create an apparent asymptote, better fit by an exponential function. Last, we note that total volume values may change30

depending on which A-V scaling relations is used and with which assumptions, and their absolute values may be inaccurate

but this should not affect much the reported scaling form and exponents as potential biases should be relatively uniform.

Total number of landslides also tends to increase with total rain but the scatter is much larger. This is at least partly an artifact,
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Figure 4. Slope gradient probability distribution for the affected topography (solid) and the landslides affected areas only (dashed), for the

eight rainfall events and as a comparison to the Chi-Chi earthquake. For C99 we have a landslide distribution for the landslide including

deposit and for source point only.

given that for C99, MI2 and B11, high resolution imagery allows to delineate many more small landslides and to mitigate amal-

gamation, whereas for B08, TW8 and TW9, the limited spatial resolution, the density of landsliding and our limited ability to

split amalgamated landslides lead to an underestimation of the landslide number. Thus, even if landslide number may contain

information, quantitative comparisons of the different events are biased and we will not further interpret the total number of

landslides in the following.5

Last, we note that the landslide distribution areas (i.e., the regions within which landslides are distributed) also correlate

strongly with the total rainfall. Only considering the eight inventories strongly suggest a power law form. However, based on

the dataset reported for the Hurricane Mitch, the distribution area was at least 100,000 km2, for maximum total rainfall at about

1500mm (Cannon et al., 2001). Adding it to our fit, we found that power-law or exponential functions of the rainfall explained

similar amount of the variance, 72% and 63% respectively.10

In the next subsection, we compute landslide densities (in % of area), allowing to study the intra-storm variability of landsliding.

3.2.2 Maximum and mean landslide density

Understanding what controls landslide density is a key objective to better constrain hazards and their consequences. For each

storm we compute the mean landslide density (in area and volume) by dividing total landsliding by the landslide distribution15

area (Fig 7A). This density represents the whole affected area and hides important spatial variability (Fig 1), thus we also com-
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Figure 5. (A) Ratio of the two probability distributions against the difference between slope gradient and the modal topography. We display

two curves for C99 landslides, the dash-dotted one from the whole landslide area, including deposits, and the other from source point only.

(B) Anti-correlation between the steep slope sampling (that is the mean of PL/PT for S−SM in [15,30]) and storm duration. Solid and

dashed lines are the best power law fit of the data, averaging C99-all and C99 source into 1 data point (R2 = 0.7). We indicate with an arrow

that B08 duration may be underestimated.

pute the maximum landslide density, by computing the total landsliding (again in area and volume) within a moving window

of 0.05° (∼ 25km2), assigning landslides to a cell based on their centroid locations, and selecting the maximal value (Fig 7B).

Given the better correlation obtained above with a runout normalization, we focus on area and volume densities derived from

scar estimates.

The mean landslide densities vary between 0.01−1% and 100−10,000m3.km−2 but with poor correlation with total rainfall5

(R2 = 0.01 and R2 = 0.46 for area and volume density respectively). Indeed, given that both total landsliding and distribution

area increase strongly with total rainfall, their ratio is relatively independent. In contrast, the maximum landslide scar density

and volume density range from 0.1 to 5% and 0.002 to 1.5 millions m3.km−2 , respectively, and are strongly correlated with

a power-law of total rainfall (R2 = 0.76 and R2 = 0.95). We found very similar correlations when computing the local den-

sity on a grid of 0.03° or 0.1°, but degraded correlations when using the whole landslide area to compute landslide density10

(R2 = 0.40 and R2 = 0.69). We also note that, as for the total landsliding, maximum landslide density and volume density are

significantly correlated with peak rainfall intensity, I3 (R2 = 0.58 and R2 = 0.67, respectively), and duration, D (R2 = 0.70
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Figure 6. Total landsliding in area and volume derived from whole landslides (A) or from scar estimates only (B), total landslide number (C)

and landslide distribution area (D) against storm total rainfall. M98 is for Mitch 1998. Horizontal error bars show a range of maximum storm

rainfall when available (cf, Table 1). In A and B 1σ uncertainty on the total volumes and areas, ignoring potential landslide mis-detection

(cf. methods), are smaller than the symbols (< 10%). Vertical error bars are based on the range of affected areas in D, while we could not

obtain quantitative uncertainties on the total number (C).

and R2 = 0.73, respectively), although less strongly than with total rainfall.

3.2.3 Landslide size, runout and position on slope

The power-law decay exponents of the distribution of landslide size or equivalent aspect ratio (Fig 3, S??) do not correlate

significantly with any storm metrics (Intensity, duration or total rainfall) (|R|< 0.2). Indeed, long runout landslides are abun-5

dant for the smallest storm, C99, as well as for the second largest storm, J11, but are less frequent for the other storms (e.g.,

MI2,TW8, B08), spanning the whole range of storm indexes.

However, we note that the events where landslides occurred preferentially on steep slopes correspond to very short duration

rainfall events (C99 and C15), while the events with the strongest undersampling of steep slopes are the longest storms (B08).
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Figure 7. Mean landslide density (A) and peak landslide density in a 0.05° sliding window (B), against storm total rainfall. Landslide area

and volume are derived from scar estimates, i.e., removing runout contribution. Horizontal error bars shows a range of maximum storm

rainfall when available (cf, Table 1). Vertical error bars are based on the range of affected area in A (the most uncertain term), and represents

1σ uncertainty on the total volume and area density in B, ignoring potential landslide mis-detection (cf. methods).

Indeed, if we compute the mean landslide/topography sampling ratio between 10 and 30° above the local topographic mode,

we find a correlation of this index with storm duration. A power-law fit is most appropriate and explains∼ 70% of the variance

(Fig 5). This correlation may even be underestimated considering that the Brazil 2008 storm, occurred after several weeks of

anomalously elevated rainfall, suggesting a longer duration.

5

4 Discussion

4.1 Scaling between rainfall and landsliding

We found that total landsliding, peak landslide density and the distribution area of landsliding were all best described as

increasing as a power-law or exponential function of the total storm rainfall, Rt. Our mechanistic understanding of landsliding

predicts that, for a given site, the driving force leading to failure is the reduction of normal load and friction due to the increasing10
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pore water pressure (Iverson, 2000). This requires progressive saturation of the material above the failure plane, and depends

directly on the total amount of water poured on the slopes. The antecedent rainfall is also expected to play a key role, in

controlling the saturation level before the triggering storm (e.g., Gabet et al., 2004; Godt et al., 2006). However, if the regolith

is already close to the field capacity, significant parts of antecedent rainfall may be drained from the regolith within some hours

or days (Wilson and Wieczorek, 1995), and as result, the contribution of past storms may be negligible compared to heavy5

rainfalls over relatively short time intervals (1-4 days). However, for moderate storms, like C15 or C99, and especially during

dry periods when the slope is saturated below field capacity, the role of antecedent rainfall may be more substantial. Thus, we

expect that moderate storms happening after prolonged dry or wet periods may deviate downward or upward from the scaling,

respectively. We also note that an abundance of larger and deeper landslide strongly influencing the total volume or erosion,

may depend on deeper water level rather than regolith saturation and thus may be most sensitive to water accumulation over10

several days rather than a few hours (Van Asch et al., 1999; Uchida et al., 2013). Therefore, although we obtained a good

correlation without considering antecedent rainfall, its role should be assessed in future refined scalings. Last, the scaling

reported here is based on events where all landslides occurred within a short time frame (few hours to few days), and would not

apply to a monsoon setting where landslides occur more or less continuously during several weeks (Gabet et al., 2004; Dahal

and Hasegawa, 2008), driven by continuous, heavy but unexceptional, rainfall.15

The strong correlation between Rt and distribution area, suggests that storms able to generate greater amounts of rainfall also

tends to deliver a sufficient amount of rain over broader areas. We have no clear physical explanation of why this could be the

case, and cannot exclude that it is a coincidence allowed by our small number of events. In any case the broader zone is not

likely to receive homogeneous rainfall amount, decoupling mean landslide density from storm maximum strength (Fig 7A).

The variability of rainfall within these extended zones is likely a main control on the spatial variability of landslide density,20

although lithological properties or slope distribution may also matter. Indeed lithological boundaries, or a lack of steep slopes

can sometimes explain spatial variability in landsliding, but not all of it (Fig Suppl. 6). In any case, it seems clear that to

predict the spatial variability of landsliding, the rainfall spatio-temporal pattern is a prime requirement. The good correlation

between storm total rainfall and peak landslide density, is encouraging and suggests that, as most mountainous regions may

have sparse instrumental coverage, the use of satellite measurements (Ushio et al., 2009; Huffman et al., 2007) or meso-scale25

meteorological models (e.g., Lafore et al., 1997) may be required.

A few non-linear scaling between total landsliding and total rainfall have been reported at the catchment scale, but were derived

from datasets not easily comparable to the one presented in this study (Reid, 1998; Chen et al., 2013; Marc et al., 2015). The

details of this scaling is of importance in order to understand the impact of extreme rainfall events and more generally which

type of rainfall event contributes most to sediment transfer over long time scales (Reid and Page, 2003; Chen et al., 2015). We30

also found non-linear scaling betweenRt and total landslide area, but without a strong statistical difference between exponential

or power-law. Exponential functions yield a minimum landsliding amount at low rainfall, that is not physical justified. This

apparent contradiction may, however, be resolved by considering a rainfall threshold below which landsliding is null. The

higher correlation between Rt and total volume, is likely due to the fact that Rt correlates very well with maximum landslide

size (R2 = 0.8 with whole landslides, R2 = 0.9 and almost linear correlation with scar estimates, Figure Suppl 5), with large35
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landslides contributing most of the total volume and erosion. A correlation betweenRt and large landsliding may arise because

landslide stability is determined by the ratio between pore pressure and the total normal stress on the slip plane, meaning that

larger landslides that have usually deeper failure planes (Larsen et al., 2010), may only fail with greater precipitation amount.

However, given that we do not observe a clear trend between total rainfall and size distribution, a competing hypothesis may

be that this correlation is just a sampling bias as the probability to draw large landslides increases with the total number of5

landslides. For now, our unreliable estimates of total landslide number do not allow to test this alternative.

The scaling with rainfall may also be obscured by outliers due to processes not controlled by rainfall. For example, the inclusion

of the very long runout components in several inventories led to larger scattering for both power-law and exponential models

and to favor the latter. Therefore, the proposed runout correction seem essential for future studies. Another issue concerns the

normalization of landscape parameters affecting the susceptibility to landsliding, such as hillslope steepness and mechanical10

strength (Schmidt and Montgomery, 1995; Parise and Jibson, 2000; Marc et al., 2016). The impact of hillslope steepness may

be difficult to include as it seems to vary with the type of storms (Fig 5), as discussed below. Nevertheless, the proportion of flat

or submerged land within the area of the most intense rainfall must limit the total landsliding, as it was certainly the case for

MI2 or B08 (Fig 1). Recent, widespread antecedent landsliding may also reduce subsequent susceptibility to rainfall triggering

by removing the weak layer of soil on steep slopes. In the pre-event imagery we did not see specific evidence of such limitation,15

except maybe for J11, where abundant pre-event fresh landsliding were visible near 136,25°E/34,29°N and 135,9°E/34,20° and

very few new landslides occurred. More systematic evaluation of this effect may be important when comparing quantitatively

landslide and rainfall pattern. In any case, it is clear that further analysis of this database, possibly extended with additional

landslide inventories, should be used by future studies to refine the scaling with rainfall and incorporate the effects of controlling

parameters such as available topography, antecedent rainfall or regolith properties (e.g., strength and permeability).20

4.2 Relation between rainfall and landslide properties

We do not find a clear influence of storm metrics on landslide scar areas nor runout areas distributions. This does not necessarily

imply that storm properties do not affect landslide runout or scar size, but suggest that this effect is minor compared to other

factors varying between the inventories. For example, large lithological contrast exist between each events, and sometimes

within event (J11, TW9, Fig Suppl. 6). Variations in slope distribution and relief are also wide between each case (Fig 1, 4)25

and have also been reported to influence landslide size (Frattini and Crosta, 2013) since long and steep slopes amplify runout.

Therefore, it is likely that only some adequate normalization of these contributions could reveal the influence of rainfall on

landslide size. Given that topography and lithology change within the landslide distribution area, accurate comparison would

also require to assess the spatial variations of rainfall over these zones. Last, the relative proportion of shallow and deep

landslides (i.e., small and large) must depend on the ratio of rain intensity over regolith hydrological properties (Iverson,30

2000), allowing or impeding the occurrence of transient water accumulation pulses at shallow depth. Given that water retention

and hydraulic conductivity may easily change by orders of magnitude between different environments, focusing on rainfall

intensity only is likely insufficient. Thus, either conductivity should be assessed at first order or we should study various

storms occurring over the same region, for example with datasets from Taiwan (Chen et al., 2013).
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Finally, we observed at least two regimes of relations between landsliding and the topographical slopes, one in which landslides

occur preferentially on the steepest part of the topography and the other in which the landslides occur almost uniformly on

slopes beyond the topographic mode (Fig 4). It is yet unclear whether the case of Brazil 2008 with a systematic under-sampling

of steep slopes is another behavior or is in the continuity of the latter type. In any case, these behaviors do not correlate with the

topographic mode itself or the total landsliding. We note that in the case of earthquake triggered landslides, we systematically5

observe preferential landsliding on the steepest slopes (Parise and Jibson, 2000; Gorum et al., 2013, 2014)(Fig 4), quite similar

to one end-member behavior. One dimensional static force balance shows that the steepest slopes are the most unstable, and

therefore the over-sampling of steep slopes must be expected if the forcing (pore water pressure or shaking) is randomly

distributed across the whole topography. To obtain equal sampling or under-sampling of steep slopes, the forcing intensity

must be anti-correlated with slope gradient. Rainfall may be mostly independent of local slopes, but probably not the pore10

pressure rise that depends on the underground water circulation and thus topography. The pore pressure will thus depend

crucially on vertical infiltration and drainage, but also on along-slope contributions. For example under moderate intensity, but

long rainfall, pore water pressure will reach higher level in concave, downslope areas (Montgomery and Dietrich, 1994) with

relatively large drainage area, and thus lower slope gradient (Montgomery, 2001). In such view, landslide slope statistics would

bear information on the type of rainfall, short and intense (relative to local permeability) for steep over-sampling, while equal15

sampling and under-sampling would relate to moderate and long rainfall. This framework could explain the significant anti-

correlation between the landslide-topography probability ratio and the storm duration (Fig 4). We tried to plot the slope-gradient

vs drainage area relationship for topography and landslide subset of various events without finding clear over-sampling of high-

drainage and gentle gradient ares in the landslide distribution. This may suggest another explanation has to be put forward, or

simply that a 30m DEM is not able to resolve accurately the fine-scale pattern of slope and drainage on the hillsides, where20

landslides occur. In any case, we note that it is often suggested that short and intense rainfall should produce mostly small

landslides in contrast to long, moderate rainfall (Van Asch et al., 1999), but our datasets suggest it may be easier to detect

differences in the slope sampling of landslides for these storm end-members. Further constraints on the behavior of these end-

members may be achieved through a discussion in terms of relative distance from ridge and river (cf, Meunier et al., 2008), as

intense and brief storms should yield uniformly distributed landsliding, in contrast to longer, less intense storms favoring near25

river slides.

5 Conclusions

We present landslide inventories (comprising from a few hundreds to more than 15,000 events) associated with eight triggering

rain storms from Asia, South America, and North America. We hypothesize that these datasets constitute a global database

of rainfall-induced landslides, that allows studying a number of landslide metrics and their relations to rainfall and landscape30

properties. Indeed, although spanning a large range of landscape settings, whether in terms of topography, climate or vegetation,

the magnitude of landsliding scales non-linearly with the magnitude of the storm, here quantified with estimates of the total

rainfall. We also found that correlation between landsliding and rainfall is higher when considering landslide scar estimates
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obtained through a normalization of landslide runout, as the runout distribution does not clearly correlate to rainfall. For total

landsliding and maximum local landslide density, power-law scaling based on total rainfall explains 74% (87% for total volume)

and 76% (95% for volume density) of the variance, respectively. Adding a number of other storm events as well as integrating

other rainfall forcing parameters or landscape susceptibility properties have therefore the potential to yield robust prediction

on the magnitude of rainfall induced landsliding. Last, we identify that short storm tends to trigger landslides on the steepest5

slopes of the landscapes while landslides induced by long storms sample equally the slope distribution, possibly relating to

underground water accumulation on high drainage-low gradient portions of the hillslope. This may bring new, although less

straightforward, implications for the difference in resulting topography of bedrock landscape dominated by rainfall-induced

or earthquake-induced landslides (Densmore and Hovius, 2000). Although preliminary these insights and scaling clearly show

the value of collecting comprehensive landslide inventories that can be related to a single storm and we identified a number10

of recent storm events were such type of inventory could be produced. Although not systematically addressed here, landslide

density spatial pattern is likely strongly related to the spatio-temporal pattern of rainfall, and constraining the quantitative links

between the two is another challenge that may be addressed with some of the inventories presented here. More generally,

the database presented here may also serve as a benchmark for developing and comparing rainfall induced landslide models,

whether empirical, semi- or fully-deterministic. These future developments are important challenges in order to understand15

the natural hazards posed by rainfall-induced landslides as well as their specific implication for the erosion and topographic

evolution of landscapes in different climatic settings.
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